Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Antimicrob Agents Chemother ; 67(1): e0131522, 2023 01 24.
Article in English | MEDLINE | ID: covidwho-2245366

ABSTRACT

We report that ribavirin exerts an inhibitory and mutagenic activity on SARS-CoV-2-infecting Vero cells, with a therapeutic index higher than 10. Deep sequencing analysis of the mutant spectrum of SARS-CoV-2 replicating in the absence or presence of ribavirin indicated an increase in the number of mutations, but not in deletions, and modification of diversity indices, expected from a mutagenic activity. Notably, the major mutation types enhanced by replication in the presence of ribavirin were A→G and U→C transitions, a pattern which is opposite to the dominance of G→A and C→U transitions previously described for most RNA viruses. Implications of the inhibitory activity of ribavirin, and the atypical mutational bias produced on SARS-CoV-2, for the search for synergistic anti-COVID-19 lethal mutagen combinations are discussed.


Subject(s)
COVID-19 , Ribavirin , Animals , Chlorocebus aethiops , Ribavirin/pharmacology , Ribavirin/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , SARS-CoV-2/genetics , Vero Cells , Mutation , Mutagens/pharmacology
2.
Viruses ; 14(3)2022 03 16.
Article in English | MEDLINE | ID: covidwho-1810308

ABSTRACT

Enhancing treatment uptake for hepatitis C to achieve the elimination goals set by the World Health Organization could be achieved by reducing the treatment duration. The aim of this study was to compare the sustained virological response at week 12 (SVR12) after four weeks of glecaprevir/pibrentasvir (GLE/PIB) + ribavirin compared to eight weeks of GLE/PIB and to estimate predictors for SVR12 with four weeks of treatment through a multicenter open label randomized controlled trial. Patients were randomized 2:1 (4 weeks:8 weeks) and stratified by genotype 3 and were treatment naïve of all genotypes and without significant liver fibrosis. A total of 27 patients were analyzed for predictors for SVR12, including 15 from the first pilot phase of the study. In the 'modified intention to treat' group, 100% (7/7) achieved cure after eight weeks and for patients treated for four weeks the SVR12 was 58.3% (7/12). However, patients with a baseline viral load <2 mill IU/mL had 93% SVR12. The study closed prematurely due to the low number of included patients due to the COVID-19 pandemic. Our results suggest that viral load should be taken into account when considering trials of short course treatment.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Aminoisobutyric Acids , Antiviral Agents/therapeutic use , Benzimidazoles , Cyclopropanes , Hepatitis C, Chronic/drug therapy , Humans , Lactams, Macrocyclic , Leucine/analogs & derivatives , Pandemics , Proline/analogs & derivatives , Pyrrolidines , Quinoxalines , Ribavirin/therapeutic use , Sulfonamides
3.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2123700

ABSTRACT

The changes occurring in viral quasispecies populations during infection have been monitored using diversity indices, nucleotide diversity, and several other indices to summarize the quasispecies structure in a single value. In this study, we present a method to partition quasispecies haplotypes into four fractions according to their fitness: the master haplotype, rare haplotypes at two levels (those present at <0.1%, and those at 0.1−1%), and a fourth fraction that we term emerging haplotypes, present at frequencies >1%, but less than that of the master haplotype. We propose that by determining the changes occurring in the volume of the four quasispecies fitness fractions together with those of the Hill number profile we will be able to visualize and analyze the molecular changes in the composition of a quasispecies with time. To develop this concept, we used three data sets: a technical clone of the complete SARS-CoV-2 spike gene, a subset of data previously used in a study of rare haplotypes, and data from a clinical follow-up study of a patient chronically infected with HEV and treated with ribavirin. The viral response to ribavirin mutagenic treatment was selection of a rich set of synonymous haplotypes. The mutation spectrum was very complex at the nucleotide level, but at the protein (phenotypic/functional) level the pattern differed, showing a highly prevalent master phenotype. We discuss the putative implications of this observation in relation to mutagenic antiviral treatment.


Subject(s)
Hepatitis E virus , Hepatitis E , Ribavirin , Humans , Follow-Up Studies , Mutagens , Nucleotides , Quasispecies/genetics , Ribavirin/therapeutic use , SARS-CoV-2/genetics , Hepatitis E/drug therapy , Hepatitis E virus/drug effects , Hepatitis E virus/genetics
4.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4505-4516, 2022 Aug.
Article in Chinese | MEDLINE | ID: covidwho-1998106

ABSTRACT

This study aims to obtain higher-level evidence by overviewing the Meta-analysis of Lianhua Qingwen preparations in the treatment of viral diseases including influenza, coronavirus disease 2019(COVID-19), and hand, foot and mouth disease(HFMD). CNKI, Wanfang, VIP, China Clinical Trial Registry(ChiCTR), PubMed, EMbase, Web of Science, and Cochrane Library were searched for the Meta-analysis about the treatment of viral diseases with Lianhua Qingwen preparations from the database establishment to April 1, 2022. After literature screening and data extraction, AMSTAR2 and the grading of recommendations assessment, development and evaluations(GRADE) system were used to assess the methodological quality and evidence quality, respectively, and then the efficacy and safety outcomes of Lianhua Qingwen preparations in the treatment of viral diseases were summarized. Thirteen Meta-analysis were finally included, three of which were rated as low grade by AMSTAR2 and ten as very low grade. A total of 75 outcome indicators were obtained, involving influenza, COVID-19, and HFMD. According to the GRADE scoring results, the 75 outcome indicators included 5(6.7%) high-level indicators, 18(24.0%) mediate-level indicators, 25(33.3%) low-level evidence indicators, and 27(36.0%) very low-level indicators.(1)In the treatment of influenza, Lianhua Qingwen preparations exhibited better clinical efficacy than other Chinese patent medicines and Ribavirin and had similar clinical efficacy compared with Oseltamivir. Lianhua Qingwen preparations were superior to other Chinese patent medicines, Oseltamivir, and Ribavirin in alleviating clinical symptoms. They showed no significant differences from Oseltamivir or conventional anti-influenza treatment in terms of the time to and rate of negative result of viral nucleic acid test.(2)In the treatment of COVID-19, Lianhua Qingwen preparation alone or combined with conventional treatment was superior to conventional treatment in terms of total effective rate, main symptom subsidence rate and time, fever clearance rate, duration of fever, time to fever clearance, cough subsidence rate, time to cough subsidence, fatigue subsidence rate, time to fatigue subsidence, myalgia subsidence rate, expectoration subsidence rate, chest tightness subsidence rate, etc. Lianhua Qingwen preparations no difference from conventional treatment in terms of subsiding sore throat, nausea, diarrhea, loss of appetite, headache, and dyspnea. In terms of chest CT improvement rate, rate of progression to severe case, cure time, and hospitalization time, Lianhua Qingwen alone or in combination with conventional treatment was superior to conventional treatment.(3)In the treatment of HFMD, Lianhua Qingwen Granules was superior to conventional treatment in terms of total effective rate, average fever clearance time, time to herpes subsidence, and time to negative result of viral nucleic acid test.(4)In terms of safety, Lianhua Qingwen preparations led to low incidence of adverse reactions, all of which were mild and disappeared after drug withdrawal. The available evidence suggests that in the treatment of influenza, COVID-19, and HFMD, Lianhua Qingwen preparations can relieve the clinical symptoms, shorten the hospitalization time, and improve the chest CT. They have therapeutic effect and good safety in the treatment of viral diseases. However, due to the low quality of available studies, more high-quality clinical trials are needed to support the above conclusions.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Influenza, Human , Nucleic Acids , Cough , Drugs, Chinese Herbal/therapeutic use , Fatigue , Fever/drug therapy , Humans , Influenza, Human/drug therapy , Meta-Analysis as Topic , Nonprescription Drugs/therapeutic use , Nucleic Acids/therapeutic use , Oseltamivir/therapeutic use , Ribavirin/therapeutic use
5.
J Biol Chem ; 298(8): 102169, 2022 08.
Article in English | MEDLINE | ID: covidwho-1895142

ABSTRACT

Remdesivir and molnupiravir have gained considerable interest because of their demonstrated activity against SARS-CoV-2. These antivirals are converted intracellularly to their active triphosphate forms remdesivir-TP and molnupiravir-TP. Cellular hydrolysis of these active metabolites would consequently decrease the efficiency of these drugs; however, whether endogenous enzymes that can catalyze this hydrolysis exist is unknown. Here, we tested remdesivir-TP as a substrate against a panel of human hydrolases and found that only Nudix hydrolase (NUDT) 18 catalyzed the hydrolysis of remdesivir-TP with notable activity. The kcat/Km value of NUDT18 for remdesivir-TP was determined to be 17,700 s-1M-1, suggesting that NUDT18-catalyzed hydrolysis of remdesivir-TP may occur in cells. Moreover, we demonstrate that the triphosphates of the antivirals ribavirin and molnupiravir are also hydrolyzed by NUDT18, albeit with lower efficiency than Remdesivir-TP. Low activity was also observed with the triphosphate forms of sofosbuvir and aciclovir. This is the first report showing that NUDT18 hydrolyzes triphosphates of nucleoside analogs of exogenous origin, suggesting that NUDT18 can act as a cellular sanitizer of modified nucleotides and may influence the antiviral efficacy of remdesivir, molnupiravir, and ribavirin. As NUDT18 is expressed in respiratory epithelial cells, it may limit the antiviral efficacy of remdesivir and molnupiravir against SARS-CoV-2 replication by decreasing the intracellular concentration of their active metabolites at their intended site of action.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Cytidine/analogs & derivatives , Humans , Hydrolysis , Hydroxylamines , Polyphosphates , Pyrophosphatases , Ribavirin/pharmacology , Ribavirin/therapeutic use , SARS-CoV-2
6.
Biomed Chromatogr ; 36(7): e5370, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1748780

ABSTRACT

Ribavirin is a synthetic, broad-spectrum antiviral drug. Ribavirin is recommended as an antiviral drug in the Interim Guidance for Diagnosis and Treatment (the seventh edition) of COVID-19. The ribavirin levels in red blood cells may be closely related to both its efficacy and adverse drug reactions. In this study, a simple and fast HPLC-UV method was established to determine the concentrations of total ribavirin in the red blood cells of 13 patients with COVID-19. Phosphorylated ribavirin was dephosphorylated by phosphatase incubation to obtain the total amount of ribavirin in red blood cells. The chromatographic column was an Atlantis C18 . The recoveries were 85.45-89.05% at three levels. A good linear response was from 1 to 200 µg/ml, with a correlation coefficient of r2 = 0.9991. The concentration of total ribavirin in the red blood cells of the patients ranged from 30.83 to 133.34 µg/ml. The same samples without phosphatase incubation ranged from 4.07 to 20.84 µg/ml. About 85% of ribavirin was phosphorylated in red blood cells. In addition, we observed changes in these patients' hematological parameters and found that the erythrocyte, hemoglobin and hematocrit declined to the lowest levels on the fifth day after discontinuation of ribavirin (p < 0.05).


Subject(s)
COVID-19 Drug Treatment , Ribavirin , Antiviral Agents , Chromatography, High Pressure Liquid/methods , Erythrocytes , Humans , Phosphoric Monoester Hydrolases/analysis , Ribavirin/analysis , Ribavirin/therapeutic use
7.
Environ Mol Mutagen ; 63(1): 37-63, 2022 01.
Article in English | MEDLINE | ID: covidwho-1620131

ABSTRACT

This review considers antiviral nucleoside analog drugs, including ribavirin, favipiravir, and molnupiravir, which induce genome error catastrophe in SARS-CoV or SARS-CoV-2 via lethal mutagenesis as a mode of action. In vitro data indicate that molnupiravir may be 100 times more potent as an antiviral agent than ribavirin or favipiravir. Molnupiravir has recently demonstrated efficacy in a phase 3 clinical trial. Because of its anticipated global use, its relative potency, and the reported in vitro "host" cell mutagenicity of its active principle, ß-d-N4-hydroxycytidine, we have reviewed the development of molnupiravir and its genotoxicity safety evaluation, as well as the genotoxicity profiles of three congeners, that is, ribavirin, favipiravir, and 5-(2-chloroethyl)-2'-deoxyuridine. We consider the potential genetic risks of molnupiravir on the basis of all available information and focus on the need for additional human genotoxicity data and follow-up in patients treated with molnupiravir and similar drugs. Such human data are especially relevant for antiviral NAs that have the potential of permanently modifying the genomes of treated patients and/or causing human teratogenicity or embryotoxicity. We conclude that the results of preclinical genotoxicity studies and phase 1 human clinical safety, tolerability, and pharmacokinetics are critical components of drug safety assessments and sentinels of unanticipated adverse health effects. We provide our rationale for performing more thorough genotoxicity testing prior to and within phase 1 clinical trials, including human PIG-A and error corrected next generation sequencing (duplex sequencing) studies in DNA and mitochondrial DNA of patients treated with antiviral NAs that induce genome error catastrophe via lethal mutagenesis.


Subject(s)
Antiviral Agents/adverse effects , COVID-19 Drug Treatment , Cytidine/analogs & derivatives , DNA Damage/drug effects , Hydroxylamines/adverse effects , Nucleosides/adverse effects , SARS-CoV-2/genetics , Amides/adverse effects , Amides/therapeutic use , Antiviral Agents/therapeutic use , Cytidine/adverse effects , Cytidine/therapeutic use , Deoxyuridine/adverse effects , Deoxyuridine/analogs & derivatives , Deoxyuridine/therapeutic use , Genome, Human/drug effects , Humans , Hydroxylamines/therapeutic use , Mutagenesis/drug effects , Nucleosides/therapeutic use , Pyrazines/adverse effects , Pyrazines/therapeutic use , Ribavirin/adverse effects , Ribavirin/therapeutic use , SARS-CoV-2/drug effects
8.
Viruses ; 13(10)2021 10 14.
Article in English | MEDLINE | ID: covidwho-1470993

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a member of the Coronaviridae family, which is responsible for the COVID-19 pandemic followed by unprecedented global societal and economic disruptive impact. The innate immune system is the body's first line of defense against invading pathogens and is induced by a variety of cellular receptors that sense viral components. However, various strategies are exploited by SARS-CoV-2 to disrupt the antiviral innate immune responses. Innate immune dysfunction is characterized by the weak generation of type I interferons (IFNs) and the hypersecretion of pro-inflammatory cytokines, leading to mortality and organ injury in patients with COVID-19. This review summarizes the existing understanding of the mutual effects between SARS-CoV-2 and the type I IFN (IFN-α/ß) responses, emphasizing the relationship between host innate immune signaling and viral proteases with an insight on tackling potential therapeutic targets.


Subject(s)
COVID-19/immunology , Immune Evasion/immunology , Immunity, Innate/immunology , Interferon Type I/immunology , SARS-CoV-2/immunology , Antiviral Agents/therapeutic use , COVID-19/pathology , Cytokines/metabolism , Drug Combinations , Humans , Interferon Type I/biosynthesis , Lopinavir/therapeutic use , Ribavirin/therapeutic use , Ritonavir/therapeutic use , Signal Transduction/immunology , COVID-19 Drug Treatment
9.
J Chemother ; 34(2): 73-86, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1459998

ABSTRACT

Viral infections are particularly common among children. They often have a mild course, are self-limiting and do not need any specific treatment. However, in some cases, the disease can be severe and lead to permanent disabilities. A variety of antiviral drugs are available for the treatments of certain infectious agents: for instance, acyclovir is used to treat herpes simplex virus encephalitis. Recommendations for flu treatment may change according to the current epidemiological surveillance data, on the basis of which antiviral sensibility can be forecast: recommended drugs for the 2020-21 flu season are oseltamivir, zanamivir, peramivir and baloxavir. Some drugs are used to treat congenital infections, such as valganciclovir and ganciclovir in congenital cytomegalovirus infection. Antiretroviral prophylaxis in newborns from HIV-1 infected mothers must be initiated as soon as possible, with one or more drugs according to therapeutic regimens based on the baby's risk category. According to the most recent guidelines, antiretroviral therapy must be started at diagnosis. Several antiretroviral drugs are available today and approved for use in children, so several combinations can be made. However, out of the 29 antiretroviral drugs approved for adults, only 38% (11/29) are approved for children under the age of two and about 60% (18/29) for children under the age of twelve. Treatment with direct antiviral agents against hepatitis C virus is approved for children over the age of three; it consists in different therapeutic regimens chosen on the basis of the viral genotype (ledipasvir/sofosbuvir for genotypes 1, 4, 5 and 6, sofosbuvir/ribavirin for genotypes 2 and 3, sofosbuvir/velpatasvir and glecaprevir/pibrentasvir for all genotypes) and it has dramatically changed the course of the illness. Many molecules have been studied in order to treat SARS-CoV-2 infection, but only remdesivir seems to play a role in shortening recovery time, although inclusion criteria are very specific and data on the use in children is limited.


Subject(s)
COVID-19 , Hepatitis C, Chronic , Adult , Antiviral Agents/therapeutic use , Child , Drug Therapy, Combination , Genotype , Hepacivirus/genetics , Hepatitis C, Chronic/drug therapy , Humans , Infant, Newborn , Ribavirin/therapeutic use , SARS-CoV-2
10.
J Med Virol ; 93(7): 4411-4419, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1263106

ABSTRACT

In late December 2019, an outbreak of a novel coronavirus which caused coronavirus disease 2019 (COVID-19) was initiated. Acute kidney injury (AKI) was associated with higher severity and mortality of COVID-19. We aimed to evaluate the effects of comorbidities and medications in addition to determining the association between AKI, antibiotics against coinfections (AAC) and outcomes of patients. We conducted a retrospective study on adult patients hospitalized with COVID-19 in a tertiary center. Our primary outcomes were the incidence rate of AKI based on comorbidities and medications. The secondary outcome was to determine mortality, intensive care unit (ICU) admission, and prolonged hospitalization by AKI and AAC. Univariable and multivariable logistic regression method was used to explore predictive effects of AKI and AAC on outcomes. Out of 854 included participants, 118 patients developed AKI in whom, 57 used AAC and 61 did not. Hypertension and diabetes were the most common comorbidities in patients developed AKI. AAC, lopinavir/ritonavir, ribavirin, angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, and corticosteroids had significant higher rate of administration in patients developed AKI. AAC were associated with higher deaths (odds ratio [OR] = 5.13; 95% confidence interval (CI): 3-8.78) and ICU admission (OR = 5.87; 95%CI: 2.81-12.27), while AKI had higher OR for prolonged hospitalization (3.37; 95%CI: 1.76-6.45). Both AKI and AAC are associated with poor prognosis of COVID-19. Defining strict criteria regarding indications and types of antibiotics would help overcoming concomitant infections and minimizing related adverse events.


Subject(s)
Acute Kidney Injury/epidemiology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/pathology , SARS-CoV-2/drug effects , Acute Kidney Injury/drug therapy , Acute Kidney Injury/virology , Adult , Angiotensin-Converting Enzyme Inhibitors , Azithromycin/therapeutic use , Coinfection/drug therapy , Coinfection/prevention & control , Critical Care/statistics & numerical data , Drug Combinations , Female , Hospital Mortality , Hospitalization/statistics & numerical data , Humans , Iran/epidemiology , Linezolid/therapeutic use , Lopinavir/therapeutic use , Male , Middle Aged , Retrospective Studies , Ribavirin/therapeutic use , Ritonavir/therapeutic use , Treatment Outcome , Vancomycin/therapeutic use
11.
PLoS One ; 16(6): e0252984, 2021.
Article in English | MEDLINE | ID: covidwho-1264224

ABSTRACT

OBJECTIVES: Our study aims at comparing the efficacy and safety of IFN-based therapy (lopinavir/ritonavir, ribavirin, and interferon ß-1b) vs. favipiravir (FPV) in a cohort of hospitalized patients with non-critical COVID-19. METHODS: Single center observational study comparing IFN-based therapy (interferon ß-1b, ribavirin, and lopinavir/ritonavir) vs. FPV in non-critical hospitalized COVID-19 patients. Allocation to either treatment group was non-random but based on changes to national treatment protocols rather than physicians' selection (quasi-experimental). We examined the association between IFN-based therapy and 28-day mortality using Cox regression model with treatment as a time-dependent covariate. RESULTS: The study cohort included 222 patients, of whom 68 (28%) received IFN-based therapy. Antiviral therapy was started at a median of 5 days (3-6 days) from symptoms onset in the IFN group vs. 6 days (4-7 days) for the FPV group, P <0.0001. IFN-based therapy was associated with a lower 28-day mortality as compared to FPV (6 (9%) vs. 18 (12%)), adjusted hazard ratio [aHR] (95% Cl) = 0.27 (0.08-0.88)). No difference in hospitalization duration between the 2 groups, 9 (7-14) days vs. 9 (7-13) days, P = 0.732 was found. IFN treated group required less use of systemic corticosteroids (57%) as compared to FPV (77%), P = 0.005 after adjusting for disease severity and other confounders. Patients in the IFN treated group were more likely to have nausea and diarrhea as compared to FPV group (13%) vs. (3%), P = 0.013 and (18%) vs. (3%), P<0.0001, respectively. CONCLUSION: Early IFN-based triple therapy was associated with lower 28-days mortality as compared to FPV.


Subject(s)
Amides/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Interferon beta-1b/therapeutic use , Lopinavir/therapeutic use , Pyrazines/therapeutic use , Ribavirin/therapeutic use , Ritonavir/therapeutic use , Adult , Aged , Drug Therapy, Combination , Female , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2/drug effects
12.
J Med Virol ; 93(5): 3176-3183, 2021 05.
Article in English | MEDLINE | ID: covidwho-1196542

ABSTRACT

This trial compared the rate and time of viral clearance in subjects receiving a combination of nitazoxanide, ribavirin, and ivermectin plus Zinc versus those receiving supportive treatment. This non-randomized controlled trial included 62 patients on the triple combination treatment versus 51 age- and sex-matched patients on routine supportive treatment. all of them confirmed cases by positive reverse-transcription polymerase chain reaction of a nasopharyngeal swab. Trial results showed that the clearance rates were 0% and 58.1% on the 7th day and 13.7% and 73.1% on the 15th day in the supportive treatment and combined antiviral groups, respectively. The cumulative clearance rates on the 15th day are 13.7% and 88.7% in the supportive treatment and combined antiviral groups, respectively. This trial concluded by stating that the combined use of nitazoxanide, ribavirin, and ivermectin plus zinc supplement effectively cleared the SARS-COV2 from the nasopharynx in a shorter time than symptomatic therapy.


Subject(s)
COVID-19 Drug Treatment , Ivermectin/therapeutic use , Nitro Compounds/therapeutic use , Ribavirin/therapeutic use , SARS-CoV-2 , Thiazoles/therapeutic use , Zinc/therapeutic use , Adult , Antimetabolites/administration & dosage , Antimetabolites/therapeutic use , Antiparasitic Agents/administration & dosage , Antiparasitic Agents/therapeutic use , Female , Humans , Ivermectin/administration & dosage , Male , Nitro Compounds/administration & dosage , Ribavirin/administration & dosage , Thiazoles/administration & dosage , Trace Elements/administration & dosage , Trace Elements/therapeutic use , Zinc/administration & dosage
13.
BMJ Case Rep ; 14(3)2021 Mar 25.
Article in English | MEDLINE | ID: covidwho-1153655

ABSTRACT

Double filtration plasmapheresis (DFPP) is an apheretic technique that selectively removes high molecular weight substances using a plasma component filter. DFPP has been used to treat positive-sense RNA virus infections, mainly chronic hepatitis C virus (HCV) infection, because of its ability to directly eliminate viral particles from blood plasma from 2008 to about 2015, before direct-acting antiviral agents was marketed. This effect has been termed virus removal and eradication by DFPP. HCV is a positive-sense RNA virus similar to West Nile virus, dengue virus and the SARS and Middle East respiratory syndrome coronaviruses. SARS-CoV-2 is classified same viral species. These viruses are all classified in Family Flaviviridae which are family of single-stranded plus-stranded RNA viruses. Viral particles are 40-60 nm in diameter, enveloped and spherical in shape. We present a rare case of HCV removal where an RNA virus infection that copresented with virus-associated autoimmune hepatitis was eliminated using DFPP. Our results indicate that DFPP may facilitate prompt viraemia reduction and may have novel treatment applications for SARS-CoV-2, that is, use of therapeutic plasma exchange for fulminant COVID-19.


Subject(s)
Coinfection/therapy , Coinfection/virology , Hepatitis C, Chronic/therapy , Hepatitis, Autoimmune/therapy , Plasmapheresis/methods , Antiviral Agents/therapeutic use , COVID-19/complications , COVID-19/therapy , Drug Therapy, Combination , Female , Hepatitis C, Chronic/complications , Hepatitis, Autoimmune/complications , Humans , Interferon alpha-2/therapeutic use , Middle Aged , Polyethylene Glycols/therapeutic use , Positive-Strand RNA Viruses/isolation & purification , Ribavirin/therapeutic use , SARS-CoV-2 , Treatment Outcome , Viral Load
15.
J Infect Chemother ; 27(6): 876-881, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1091770

ABSTRACT

INTRODUCTION: Coronavirus disease-2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) swept rapidly throughout the world. So far, no therapeutics have yet proven to be effective. Ribavirin was recommended for the treatment of COVID-19 in China because of its in vitro activity. However, evidence supporting its clinical use with good efficacy is still lacking. METHODS: A total of 208 confirmed severe COVID-19 patients who were hospitalized in Wuhan Union West Campus between 1 February 2020 and 10 March 2020 were enrolled in the retrospective study. Patients were divided into two groups based on the use of ribavirin. The primary endpoint was the time to clinical improvement. The secondary endpoints included mortality, survival time, time to throat swab SARS-CoV-2 nucleic acid negative conversion, and the length of hospital stay. RESULTS: 68 patients were treated with ribavirin while 140 not. There were no significant between-group differences in demographic characteristics, baseline laboratory test results, treatment, and distribution of ordinal scale scores at enrollment, except for coexisting diseases especially cancer (ribavirin group vs no ribavirin group, P = 0.01). Treatment with ribavirin was not associated with a difference in the time to clinical improvement (P = 0.48, HR = 0.88, 95% CI = 0.63-1.25). There were also no significant differences between-group in SARS-CoV-2 nucleic acid negative conversion, mortality, survival time, and the length of hospital stay. CONCLUSIONS: In hospitalized adult patients with severe COVID-19, no significant benefit was observed with ribavirin treatment.


Subject(s)
COVID-19 Drug Treatment , Ribavirin , Aged , China , Female , Humans , Male , Middle Aged , Retrospective Studies , Ribavirin/therapeutic use , Treatment Outcome
16.
Arch Microbiol ; 203(5): 2043-2057, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1068711

ABSTRACT

The Covid-19 pandemic is highly contagious and has spread rapidly across the globe. To date there have been no specific treatment options available for this life-threatening disease. During this medical emergency, target-based drug repositioning/repurposing with a continuous monitoring and recording of results is an effective method for the treatment and drug discovery. This review summarizes the recent findings on COVID-19, its genomic organization, molecular evolution through phylogenetic analysis and has recapitulated the drug targets by analyzing the viral molecular machinery as drug targets and repurposing of most frequently used drugs worldwide and their therapeutic applications in COVID-19. Data from solidarity trials have shown that the treatment with Chloroquine, hydroxychloroquine and lopinavir-ritonavir had no effect in reducing the mortality rate and also had adverse side effects. Remdesivir, Favipiravir and Ribavirin might be a safer therapeutic option for COVID-19. Recent clinical trial has revealed that dexamethasone and convalescent plasma treatment can reduce mortality in patients with severe forms of COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/therapy , Drug Repositioning , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Amides/therapeutic use , Animals , Chloroquine/therapeutic use , Dexamethasone/therapeutic use , Evolution, Molecular , Humans , Hydroxychloroquine/therapeutic use , Immunization, Passive , Lopinavir/therapeutic use , Pandemics , Phylogeny , Prospective Studies , Pyrazines/therapeutic use , Ribavirin/therapeutic use , Ritonavir/therapeutic use , COVID-19 Serotherapy
17.
Monaldi Arch Chest Dis ; 90(4)2020 Dec 03.
Article in English | MEDLINE | ID: covidwho-1060428

ABSTRACT

The index case of COVID-19 in Sabzevar, Khorasan Razavi Province in northeastern Iran, was an 80-year-old man with a history of psycho-neurological illness and acute respiratory clinical symptoms, and a history of travel to areas with confirmed COVID-19 cases in Gorgan City. He was identified on February 16, 2020, and his laboratory diagnosis was made on February 26, 2020. The patient was hospitalized and discharged after complete recovery. The contacts of the patient were traced, revealing the infection of his 30-year-old son with milder symptoms of COVID-19, which was confirmed through a laboratory test on April 4, 2020 and was recommended for home quarantine. Other family members had no signs of COVID-19.


Subject(s)
COVID-19/diagnosis , COVID-19/transmission , SARS-CoV-2/genetics , Adult , Aged, 80 and over , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , COVID-19/virology , Contact Tracing/methods , Drug Therapy, Combination , Humans , Iran/epidemiology , Male , Quarantine/methods , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/virology , Ribavirin/administration & dosage , Ribavirin/therapeutic use , Tomography, X-Ray Computed/methods , Travel-Related Illness , Treatment Outcome , Vancomycin/administration & dosage , Vancomycin/therapeutic use , COVID-19 Drug Treatment
18.
Ann Palliat Med ; 10(1): 707-720, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1030457

ABSTRACT

The whole world is battling through coronavirus disease 2019 (COVID-19) which is a fatal pandemic. In the early 2020, the World Health Organization (WHO) declared it as a global health emergency without definitive treatments and preventive approaches. In the absence of definitive therapeutic agents, this thorough review summarizes and outlines the potency and safety of all molecules and therapeutics which may have potential antiviral effects. A number of molecules and therapeutics licensed or being tested for some other conditions were found effective in different in vitro studies as well as in many small sample-sized clinical trials and independent case studies. However, in those clinical trials, there were some limitations which need to be overcome to find the most promising antiviral against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In conclusion, many of above-mentioned antivirals seems to have some therapeutic effects but none of them have been shown to have a strong evidence for their proper recommendation and approval in the treatment of COVID-19. Constantly evolving new evidences, exclusive adult data, language barrier, and type of study (observational, retrospective, small-sized clinical trials, or independent case series) resulted to the several limitations of this review. The need for multicentered, large sample-sized, randomized, placebo-controlled trials on COVID-19 patients to reach a proper conclusion on the most promising antiviral agent is warranted.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19/therapy , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Amides/pharmacology , Amides/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Azetidines/pharmacology , Azetidines/therapeutic use , Chloroquine/pharmacology , Chloroquine/therapeutic use , Drug Combinations , Humans , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Immunization, Passive , Indoles/pharmacology , Indoles/therapeutic use , Interferons/pharmacology , Interferons/therapeutic use , Ivermectin/pharmacology , Ivermectin/therapeutic use , Lopinavir/pharmacology , Lopinavir/therapeutic use , Nitro Compounds , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Purines/pharmacology , Purines/therapeutic use , Pyrazines/pharmacology , Pyrazines/therapeutic use , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Ribavirin/pharmacology , Ribavirin/therapeutic use , Ritonavir/pharmacology , Ritonavir/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Thiazoles/pharmacology , Thiazoles/therapeutic use , COVID-19 Serotherapy
19.
Pharmacol Res Perspect ; 9(1): e00705, 2021 02.
Article in English | MEDLINE | ID: covidwho-1014102

ABSTRACT

Drug-drug interaction (DDI) is a common clinical problem that has occurred as a result of the concomitant use of multiple drugs. DDI may occur in patients under treatment with medications used for coronavirus disease 2019 (COVID-19; i.e., chloroquine, lopinavir/ritonavir, ribavirin, tocilizumab, and remdesivir) and increase the risk of serious adverse reactions such as QT-prolongation, retinopathy, increased risk of infection, and hepatotoxicity. This review focuses on summarizing DDIs for candidate medications used for COVID-19 in order to minimize the adverse reactions.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antibodies, Monoclonal, Humanized/therapeutic use , Chloroquine/therapeutic use , Drug Interactions , Humans , Lopinavir/therapeutic use , Ribavirin/therapeutic use , Ritonavir/therapeutic use
20.
Adv Chronic Kidney Dis ; 27(5): 434-441, 2020 09.
Article in English | MEDLINE | ID: covidwho-975046

ABSTRACT

Coronavirus disease 2019, the disease caused by the severe acute respiratory syndrome coronavirus 2 virus, was first identified in the Hubei Province of China in late 2019. Currently, the only role for therapy is treatment of the disease, as opposed to postexposure prophylaxis, however multiple clinical trials are currently ongoing for both treatment and prophylaxis. Treating coronavirus disease 2019 relies on two components; the first is inhibition of the viral entrance and replication within the body and the second is inhibition of an exacerbated immune response which can be seen in patients with severe disease. Many drugs have shown in vitro antiviral activity; however, clinical trials have not been as promising. This review summarizes the current data for the most commonly used drugs for coronavirus disease 2019 and will cover the unique factors that may affect the dosing of these medications in patients with CKD. While clinical trials are ongoing, most are in patients with normal kidney function. During a pandemic, when patients with CKD are at higher risk of both infection and death, it is imperative to include patients these patients in the clinical trials.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Renal Insufficiency, Chronic/metabolism , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Amides/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/complications , COVID-19/prevention & control , COVID-19/therapy , COVID-19 Vaccines/therapeutic use , Chloroquine/therapeutic use , Creatinine/metabolism , Cytidine/analogs & derivatives , Cytidine/therapeutic use , Dexamethasone/therapeutic use , Drug Combinations , Drug Interactions , Humans , Hydroxychloroquine/therapeutic use , Hydroxylamines/therapeutic use , Immunization, Passive , Interferons/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Lopinavir/therapeutic use , Pyrazines/therapeutic use , Renal Elimination , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/therapy , Renal Replacement Therapy , Ribavirin/therapeutic use , Ritonavir/therapeutic use , SARS-CoV-2 , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL